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Abstract: Acoustic echo cancellation has conventionally employed all variants known from 
deterministic adaptive filter design. The presence of double talk makes adaptive algorithm divergent. 
Meanwhile, a double talk detector with high accuracy and low complexity cannot be implemented 
easily. In this paper, we explore interesting connections between blind source separation and 
acoustic echo cancellation, and develop a framework which blind source separation separates mixed 
signal in double-talk scenario to avoid algorithm diverge instead of double talk detector. The 
forward BSS is employed as a preprocessor to separate near-end speech while AEC cancels the 
residual echo. The simulation results are evaluated with ERLE and its performance shows that the 
proposed framework is effective in double talk scenario. 

1. Introduction 
With the development of audio conference and hands-free technology, the communication 

between human to human and human to machine becomes more and more convenient. However, 
echo caused by acoustic coupling between the microphone and the loudspeaker ruins the 
communication quality when using hands-free devices. Therefore, an acoustic echo canceller is 
strongly required to estimate the echo signal to cancel the echo. A common AEC consists of an 
adaptive filter to estimate the acoustic impulse response of the near-end room, and uses it to 
produce a replica of the echo. The replica of echo is subtracted from the near-end microphone 
signal to send an echo-free signal to the far-end. 

Nonetheless, the presence of near-end speech and noise make adaptive algorithm become 
unstable and divergent. Some double-talk detectors (DTD) are implemented to freeze filter 
adaptation in the double-talk scenario to avoid the divergence. However, the DTD has its own 
inherent disadvantage. It cannot give a precise estimation of start and end of the near-end speech. 
So the acoustic impulse response may change when the adaptation is frozen [1, 2]. 

In this paper, we propose a new framework to cancel the acoustic echo without the DTD. In this 
framework, Blind source separation (BSS) technology is combined to separate desired speech from 
mixed near-end microphone signal to avoid algorithm diverge in double-talk scenario and an 
adaptive volterra filter is implemented to cancel the residual echo. In this work, we will show how 
two channel BSS combined AEC can be used in both single and double talk scenario. The proposed 
framework achieves a good performance for AEC in comparison with the conventional AEC system. 
The organization of the paper is as follows: in Section 2, we will give an overview of conventional 
approach for AEC. The proposed framework will be described in detail in Section 3. Section 4 
compares results in cancelling echo with ERLE criterion, followed by the concluding remarks 
presented in Section 5. 
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2. Conventional AEC systems 
The structure of conventional AEC is shown in Fig. 1. The far-end signal x(n) is transmitted to 

the near-end room through the line or network, the echo signal y(n) is the result of convolution of 
far-end signal x(n) and the room impulse response (RIR), the microphone signal d(n) can be 
expressed as 

 

∑
−

=

+=+−=+=
1

0
)()()()()()()(

L

l

T
l nvnxhnvlnxhnvnynd             (1) 

 
Where [ ]TLhhh 10 −=  the coefficient vector for the room impulse response is, 

[ ]TLnxnxnx )1()()( +−= 
 is the vector for the far-end signal x (n), v (n) is the near-end 

speech. 
The classical NLMS algorithm for AEC uses its adaptive filter to approximate room impulse 

response to get ĥ  and replica echo )(ˆ ny  as 
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Which is subtracted from the microphone signal to obtain error signal e (n) as 
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And the rule of coefficient iteration can be summarized as 
 

)(ˆ)(ˆ)1(ˆ nhnhnh ∆+=+                           (4) 
 

)()(
)()(

)(ˆ nxne
nxnx

nh T β
α

+
=∆                       (5) 

 
Where α is step size, β is very small positive constant to avoid division by the zero. The result of 

the above adaptive process are as follows: )()(ˆ nhnh → , 0)(ˆ)()( →−= nynyne . And the DTD 
controls adaptation freeze or not through signal x (n), d (n) and e (n) to deal with the scene of 
double talk. However, a DTD with high accuracy and low complexity cannot be implemented 
easily. 
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Figure 1. Conventional framework of AEC 

180



  

 

 

3. Development of the proposed framework 
In order to avoid disturbance of the estimation of room impulse response, a DTD-free framework 

has been proposed and its structure is shown in Fig. 2. Firstly, a two-channel microphone collects 
the mixed signal )(1 nm  and )(2 nm  in near-end room including far-end signal x (n) and near-end 
speech v (n). Then blind source separation is adopted to separate mixed signal to get the signal 

)(1 nd  which is close to v(n) and still a part of echo needed to be cancelled. Finally, adaptive filter 
cancel the residual echo to send the echo-free signal to the far-end. 
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Figure 2. Descriptive scheme of the proposed framework 

3.1 Blind source separation 
BSS is a method for recovering a set of signals from the observation of their mixtures without any 

prior knowledge about the mixing process [3, 4], which is quite reliable to AEC preprocessing. A 
two-channel microphone is used in far-end room to capture the spatial information of the mixed 
signal, which is a great difference from conventional AEC framework. As shown in the Fig. 2, mixed 
signal at the microphone can be expressed as 
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Where x (n), v (n) is far-end signal and near-end speech, 
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H  is indicated as the 

mixing matrix. The separated signal can be estimated by linearly demixing as 
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W  is a demixing matrix which can be estimated through a gradient 

adaption as 
 

WWW ∆+=                                 (8) 
 

181



  

 

 

Where W∆  is the gradient, which takes different forms according to the cost function that is to 
be minimized. Adopting the natural gradient adaption based on the minimization of the 
Kullback-Leibler divergence, W∆  is determined as 

 
 WddEIW T ]))([( φ−=∆                           (9) 

 
Where ][⋅E  is the expectation operator. The non-linearity )(dφ  is determined from the 

expected probability density function of the output sources. A non-linearity with super-gaussian 
source is 

 
dd tanh2)( =φ                                (10) 

 
In ideal conditions, it can be seen that )(1 nd  will be approximate to near-end speech after 

several iterations but residual echo still exists, which should be cancelled by backward AEC 
algorithm. 

3.2 Acoustic echo cancellation 
In this section, an AEC based on forward BSS is explained. As the BSS method sending the 

signal )(1 nd  to AEC, a single channel adaptive volterra filter is used to cancel the far-end echo. 
For real world echo cancellation, a linear approximation may not achieve good performance [5] due 
to the nonlinear interference. A second order volterra filter [6] is used and mathematically described 
as 
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Where )(1̂ nh , )(ˆ

2 nh  are first and second order filter tap weights, L is the length of the tap 
weights. So the length of coefficients in first kernel is L and second kernel has L (L+1)/2 number of 
coefficients. The volterra filter output )(ˆ ny  is the sum of first and second order kernels and the 
weight of filter updating is done as given in (17)-(19). 
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Where 0µ , 1µ  and 2µ  are different step size for volterra kernels. 

4. Simulation results 
The simulation is carried out to demonstrate the effectiveness of the proposed framework. The 

performance is measured by Echo return loss enhancement (ERLE). ERLE is the ratio of input mixed 
signal power to the power of a residual error signal immediately after blind source separation and 
echo cancellation and measured in dB. 
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In our experiment, a male speaker is at the far end of the conversation whereas a female speaker is 

at the near end. The two people speak to each other to ensure a double-talk scenario. The far-end 
signal and near-end microphone signal are given in Fig. 3, Fig. 4 and Fig. 5. 

 
Figure 3. Time evolution and spectrograms of far-end signal x (n) 

 
Figure 4. Time evolution and spectrograms of mixed signal )(1 nm  
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Figure 5. Time evolution and spectrograms of mixed signal )(2 nm  

In experiment, BSS step size 0.2=η  is used and for volterra adaption, we used step size
0.05210 === µµµ , 64=L . 

 
Figure 6. Time evolution of the proposed framework (top: before the proposed framework, bottom: 

after the proposed framework) 
In Figs. 6, we show the time evolution of the output speech signal obtained by the proposed 

framework: in the top of figure, we show the waveform before AEC, and in the bottom we show the 
result after AEC process. Its ERLE is shown in Figs. 7. 

 
Figure 7. ERLE criterion evaluation of the proposed framework and conventional AEC 
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According to the obtained results of the ERLE criterion in Fig. 7, the conventional AEC 
produces a comparable result with the proposed framework at the beginning of signal. With the 
convergence of adaptive algorithm, it is clear that the proposed framework has the higher ERLE 
values in comparison with the conventional AEC. 

5. Conclusion 
In this paper, the BSS-AEC framework has been proposed to cancel the echo in double-talk 

scenario without the DTD. The DTD is displaced by BSS method, which is used to separate 
near-end speech in double talk scenario. To validate the proposed framework, we have carried out 
intensive experiments based on objective criteria ERLE. The simulation results have confirmed the 
superiority of the proposed framework in term of the used criteria. 
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